		_ Period	
Dun	kin' for Den	sity! $ar{}$	
MASS:	<u>Important Definitions, Fo</u> <u>VOLUME</u> :	ormulas & <u>UNITS</u> : <u>DENSI</u>	TY:
Objectives: determine the density at	t which an object will float, su s	spend or sink in water.	
Reflect on the relationsl	nip between mass, volume, and	density and relate it to balanced	d and unbalanced forces.
 Small plastic tub fill Pennies, paper clips Graduated cylinder rocedure Part 1: 1. Using the material (flink) in the mid MATERIALS A 2. One canister shoul 3. Another should res 4. And another should 	dle of a tub of tap water. Your AS POSSIBLE in this challeng d FLOAT (1) main SINK (2) d remain in the middle (FLING)	king film canister) Im canisters so that they will float, r goal is to use as FEW OF PENN re!	
Procedure Part 2:		ent provided to find the mass and	volume of each canister.
Procedure Part 2: 1. Once you have cor 2. Record the information		•	volume of each canister.
1. Once you have cor 2. Record the informa 3. Calculate the density	ation in Table 1 .	•	volume of each canister. Density (g/cm³)
1. Once you have con 2. Record the informa 3. Calculate the densi	ation in Table 1 . ity for each canister using the c Mass (g)	correct density formula.	
1. Once you have cor 2. Record the informa 3. Calculate the densi ata: Film Canister	ation in Table 1 . ity for each canister using the c Mass (g)	correct density formula.	
1. Once you have cor 2. Record the informa 3. Calculate the densi ata: Film Canister EMPTY CANISTER	ation in Table 1 . ity for each canister using the company (g)	correct density formula.	
1. Once you have cor 2. Record the informa 3. Calculate the densi ata: Film Canister EMPTY CANISTER FLOATING	ation in Table 1 . ity for each canister using the company (g)	correct density formula.	
1. Once you have cor 2. Record the informa 3. Calculate the densi ata: Film Canister EMPTY CANISTER FLOATING NEUTRAL (FLINK)	ation in Table 1 . ity for each canister using the company (g)	correct density formula.	

Λ

Analysis and Results:

,	$12 \text{ am}^3 \text{ and } 10 \text{ a}$	D 10 ml and 0.1 a			
A. 12 cm ³ and 10 g		_			
B. 2.3 g and 3.6 ml					
(2. 0.99 g and .91 cm ³	F. 1.9 cm ³ and 7.5 g/cm ³			
1.	What is the mass of an empty canister?				
2.	Did the mass of the canister change at all the	roughout the experiment? Explain.			
3.	What is the volume of an empty film caniste	r? How did you measure it?			
4.	Did the volume of the film canister change at all throughout the experiment? Explain.				
5.		would it make the density of the object get HIGHER or LOWER?			
6.	If you increased just the volume of an object, would it make the density of the object get HIGHER or LOWER				
7.	What caused each canister to stay at their level in the water? Explain what caused the canisters to float, sink, or suspend using the term density .				
8.		er) in the Great Salt Lake and sink in Horsetooth Resevoir?			
		a of air. How can you explain this based on what you learned rds: mass, volume, density, heat, and float.			
		to change its buoyancy when it is moving through the deep ocean? nain undetected. Explain your ideas below.			