Speed Calculations
 Today's Date

Focus Question:

How can you solve for the missing variable in any speed, distance, or time equations?

Evidence: Speed Notes, Formula Review, and Practice 1. Using the SDT Triangle
2. How To Solve and Proper Metric Units
3. Practice Problems (Notebook page 43)-Show your work and circle the correct answer so it is clear! Lastly, don't forget units.
a. How far can a cheetah run if it runs at a speed for $20 \mathrm{~m} / \mathrm{s}$ for 15 seconds?
b. A car travels for 6 hours at an average speed of $70 \mathrm{~km} / \mathrm{hr}$. How far did the car travel?
c. What distance does a snail move if the snail moves for 2 hours at $50 \mathrm{~m} / \mathrm{hr}$?
d. How much time does it take for a horse to run 1.5 miles at an average speed of $15 \mathrm{mi} / \mathrm{hr}$?
e. How long does it take a marathon runner to complete a 26 -mile race at an average speed of $12 \mathrm{mi} / \mathrm{hr}$?

Experiment: Measuring Speed and Acceleration

1. Card Flight Calculation

Calculation of Speed and Acceleration for the "Flick of the Card"					
Trial	Distance Card Traveled (meters)	Time of flight: flick to stop (sec)	Speed of Card (w/ unit)	Acceleration of the Card (w/ unit)	
$\mathbf{1}$					
2					
3					
Best Value: Speed of Card				Best Value: Acceleration of Card	

2. Penny Drop Calculation

Calculation of Speed and Acceleration for the "Penny Drop"

Trial	Distance of Penny $($ meters $)$	Time of drop (seconds)	Speed of Penny $(\mathbf{w} /$ unit $)$	Acceleration of the Penny $(\mathbf{w} /$ unit $)$
$\mathbf{1}$				
2				
3				
Best Value: Speed of Penny		Best Value: Acceleration of Penny		

3. Rocket Day \# 2 Flight Calculations

Calculation of Speed and Acceleration for the "Rocket Flight \#2"

Flight Day $\# 2$	Altitude of Flight (meters)	Thrust Time (up time)	Speed of Rocket (w/ unit)	Acceleration of Rocket (w/ unit)
$\mathbf{1}^{\text {st }}$ attempt				
$\mathbf{2}^{\text {nd }}$ attempt				
Best Value: Speed of Rocket Flight				

Independent Practice (Notebook Page 44)

Directions: Answer the questions in your notebook. Show all of your work and remember to label the units!

1. Calculate the distance that you would travel if you drove for 8 hours at 60 miles per hour?
2. How long does it take to travel 120 miles at 40 miles per hour?
3. A car travels 300 miles in 5 hours, stopped for lunch, then continued another 200 miles in 2.5 hours. Calculate the average speed of the car during its trip.
4. An athlete can run long distances at $4 \mathrm{~m} / \mathrm{s}$. How far can she run in 50 seconds?
5. Andrew rows at an average speed of $4 \mathrm{~m} / \mathrm{s}$. How long does it take him to row 800 m ?
6. How far would you travel if you drove for 30 minutes at $33 \mathrm{~m} / \mathrm{min}$?
7. How long is the road trip going to take if you travel 385 miles at 70 miles per hour?
8. If a car is traveling at 62 meters per second, how long would it take the car to travel 13,786 meters?
9. What is the average speed of Sally's drive if she drove for 2.5 hours at $50 \mathrm{~m} / \mathrm{hr}$ and then drove 80 meters at $20 \mathrm{~m} / \mathrm{hr}$?
10. A snail moves 5 m in 2 hours. If the snail moves at the same speed, how long would it take him to move 20 m ?

Speed Calculations

